SUPPORTING INFORMATION

Rigid Cross-conjugated Macrocycles: A Cyclic Alternative to 4,4'-Bipyridines in Supramolecular Chemistry

Katie Campbell, Robert McDonald, Neil R. Branda, Rik R. Tykwinski*

Department of Chemistry, University of Alberta Edmonton, Alberta T6G 2G2 Canada

E-mail: rik.tykwinski@ualberta.ca

- 1. Synthetic procedures and characterization for compounds 3 a-b, 5 a-b and 7 a-b.
- 2. ¹H NMR spectra for **6**.
- 3. ¹H, ¹³C, and gHMQC NMR spectra for **7a-b**.
- 4. ESI MS for **7a**.
- 5. X-ray crystallographic details for **7a**.

General. Reagents were purchased reagent grade from commercial suppliers and used without further purification. THF was distilled from sodium/benzophenone ketyl. CH₂Cl₂ was distilled from CaH₂. 3,5-Diethynyl pyridine¹ and 2a-b² were prepared as previously reported. Evaporation and concentration in vacuo was achieved at H₂Oaspirator pressure. All Pd-catalyzed coupling reactions were performed in standard, dry glassware under an inert atmosphere of N2. A positive pressure of N2 was essential to the success of all Pd-catalyzed reactions. Degassing of solvents was accomplished by vigorously bubbling N₂ through the solutions for greater than 45 min. Column chromatography: Aluminum oxide, neutral, Brockman 1, 150 mesh from Aldrich Chemical Company, Inc. Thin Layer Chromatography (TLC): Aluminum sheets coated with aluminum oxide N/UV₂₅₄ from Macherey-Nagel: visualization by UV light. M.p.: Gallencamp apparatus; uncorrected. UV/Vis spectra: Varian Cary 400 at rt; λ_{max} in nm (ε in L M⁻¹ cm⁻¹). Fluorescence spectra: *Photon Technology International* instrument at rt; Solvent: dry, degassed CH₂Cl₂. IR spectra: *Nic-Plan IR Microscope* (as solids). ¹Hand ¹³C-NMR: Varian Gemini 300 or 500 and Bruker 300 instruments at rt in CD₂Cl₂ or CDCl₃; solvent peaks (5.32 and 7.24 ppm for ¹H and 53.80 and 77.00 ppm for ¹³C, respectively) as reference. ES MS (m/z): Micromass Zabspec oaTOF or PE Biosystems Mariner TOF instruments; solvent: 3:1, MeOH:toluene or CH₃NO₂. MALDI MS (m/z): PE Voyager Elite instrument in reflectron mode with delayed extraction; Matrix: 1,8,9trihydroxyanthracene; solvent: CH₂Cl₂.

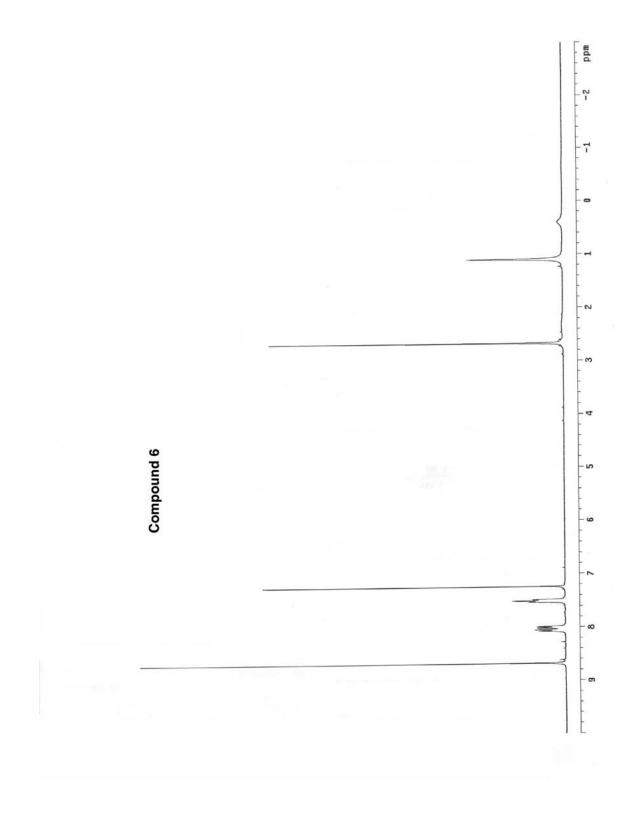
Tetrayne 3a: Pd(PPh₃)₄ (50 mg, 0.04 mmol) and CuI (25 mg, 0.13 mmol) were sequentially added to a degassed solution of diethynyl pyridine **1** (134 mg, 1.05 mmol), vinyl triflate **2a** (630 mg, 2.10 mmol) and Et₂NH (4 mL) in THF (80 mL). The reaction mixture was stirred at rt for 30 min until TLC analysis indicated the disappearance of **1**. Sat'd NH₄Cl and diethyl ether were added and the organic phase was washed with two further portions of sat'd NH₄Cl and dried over anh. MgSO₄. Flash chromatography on alumina (hexanes/CH₂Cl₂, 2:1) yielded **3a** (356 mg, 79%) as a white solid: mp 71-72 °C; $R_f = 0.4$ (hexanes/CH₂Cl₂, 2:1); UV/Vis (CH₂Cl₂) 297 (30700) nm; IR (μscope) 2959, 2904, 2210, 2151, 1577 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.21 (s, 18H), 2.08 (s, 12H), 7.78 (br s, 1H), 8.54 (br s, 2H); ¹³C NMR (75.5 MHz, APT, CD₂Cl₂) δ -0.01, 23.03, 23.06, 87.54, 90.17, 97.13, 101.22, 101.24, 120.37, 140.30, 150.86, 158.26; ES MS (MeOH/toluene) m/z (rel. intensity): 428.2 ([M + H]⁺, 100); ES HRMS m/z calcd. (C₂₇H₃₄NSi₂, M + H) 428.2230, found 428.2226.

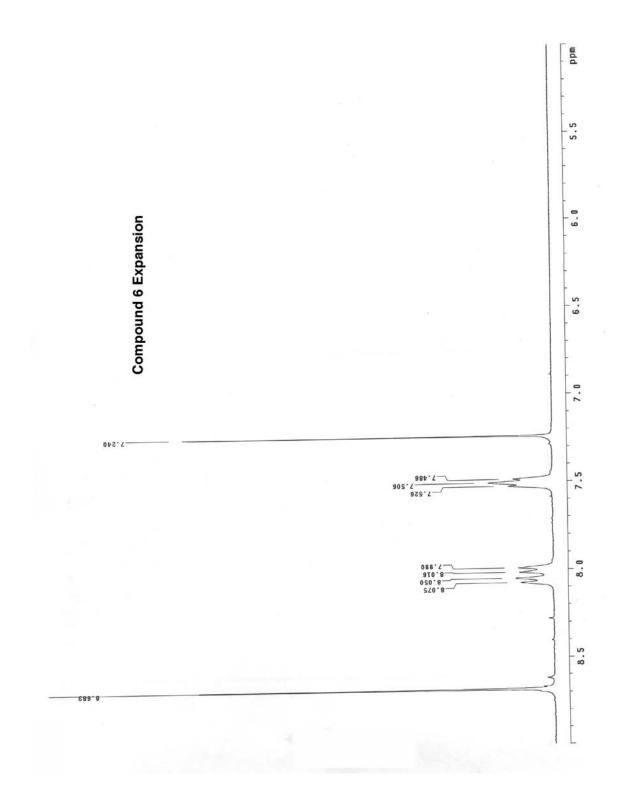
Tetrayne 3b: Pd(PPh₃)₄ (35 mg, 0.03 mmol) and CuI (20 mg, 0.10 mmol) were sequentially added to a degassed solution of diethynyl pyridine **1** (70 mg, 0.55 mmol), vinyl triflate **2b** (504 mg, 1.08 mmol) and Et₂NH (1.5 mL). The reaction flask was

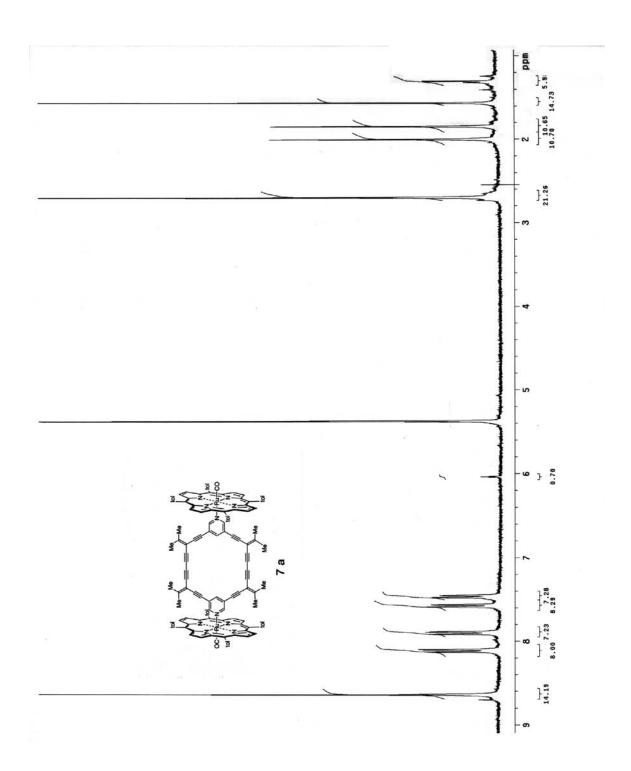
sealed under N_2 and heated for 24 hours at 55 °C. After cooling to rt, sat'd NH₄Cl and diethyl ether were added and the organic phase was washed with two further portions of sat'd NH₄Cl and dried over anh. MgSO₄. Flash chromatography on alumina (hexanes/CH₂Cl₂, 2:1) yielded **3b** (254 mg, 61%) as a clear solid: mp 118-121 °C; $R_f = 0.4$ (hexanes/CH₂Cl₂, 2:1); UV/Vis (CH₂Cl₂) 259 (48800), 348 (41700) nm; IR (µscope) 3081, 2910, 2205, 2151, 1536 cm⁻¹; ¹H NMR (300 MHz, CD₂Cl₂) δ 0.60 (q, J = 7.8 Hz, 12H), 0.95 (t, J = 7.8 Hz, 18H), 7.33-7.51 (m, 21H), 8.30 (d, J = 2.0 Hz, 2H); ¹³C NMR (75.5 MHz, APT, CD₂Cl₂) δ 4.54, 7.56, 87.68, 92.79, 96.74, 101.76, 104.00, 120.10, 128.10, 128.18, 129.23, 129.26, 130.60, 130.66, 139.97, 140.16, 140.55, 150.99, 158.57; ES MS (MeOH/toluene) m/z (rel. intensity): 760.4 ([M + H]⁺, 100); ES HRMS m/z calcd. (C₅₃H₅₄NSi₂, M + H) 760.3795, found 760.3792.

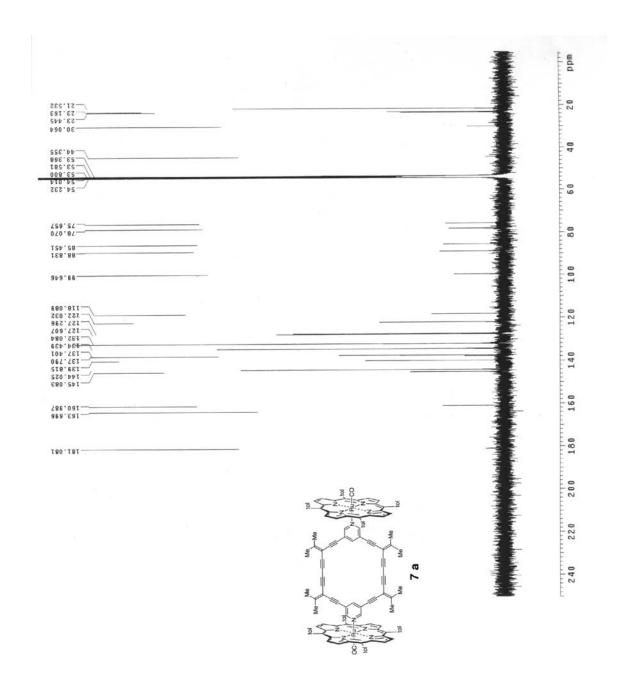
Macrocycle 5a: Trimer **3a** (154 mg, 0.36 mmol) was dissolved in wet MeOH/THF (50 mL) and desilylated by treating with K₂CO₃ and stirring at rt for 1 h. Ether and sat'd NH₄Cl were added to the reaction mixture and the organic phase was washed with two further portions of sat'd NH₄Cl and dried over anh. MgSO₄. Solvent was removed under reduced pressure and the deprotected trimer **4a** was used without any further purification. The deprotected polyyne was oxidatively coupled in dry CH₂Cl₂ (350 mL) in the presence of air, TMEDA (1.0 mL, 6.6 mmol), and CuI (520 mg, 2.73 mmol) for 90 min. at rt. Ether and sat'd NH₄Cl were added to the reaction mixture and the organic phase was washed with two further portions of sat'd NH₄Cl and dried over anh. MgSO₄. The solvent was removed under reduced pressure to yield an off-white solid. Macrocycle **5a** was not isolated due to the extremely limited solubility of this crude reaction product.

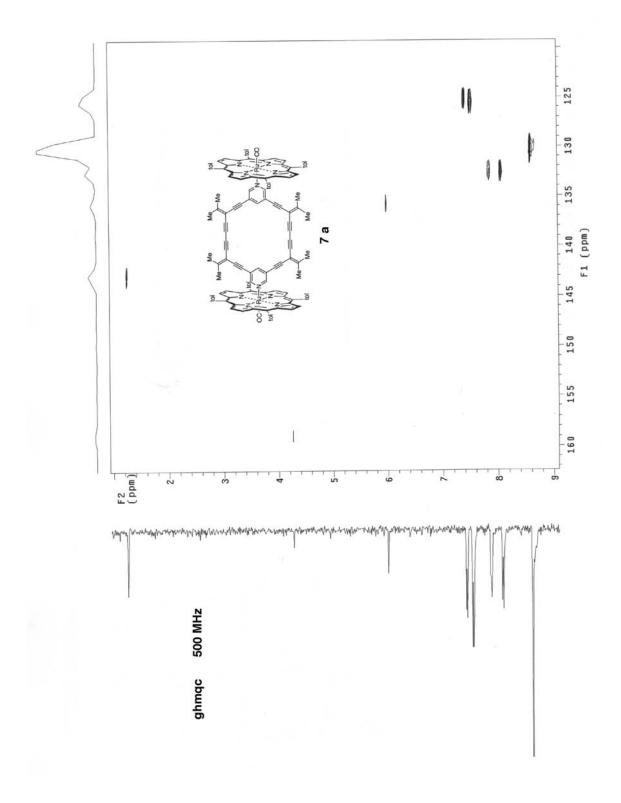
Macrocycle 5b: Trimer 3b (82 mg, 0.12 mmol) was dissolved in THF (50 mL), treated with 2 drops of TBAF, and stirred at rt for 30 min. Ether and sat'd NH₄Cl were added to the reaction mixture and the organic phase was washed with two further portions of sat'd NH₄Cl and dried over anh. MgSO₄. Solvent was removed under reduced pressure and the deprotected trimer 4b was used without any further purification. The deprotected polyyne was oxidatively coupled in dry CH₂Cl₂ (220 mL) in the presence of air, TMEDA (0.35 mL, 2.3 mmol), and CuI (175 mg, 0.92 mmol) for 3 h at rt followed by 12 h at 4 °C. Ether and sat'd NH₄Cl were added to the reaction mixture and the organic phase was washed with two further portions of sat'd NH₄Cl and dried over anh. MgSO₄. Precipitation from CH₂Cl₂ yielded **5b** (29 mg, 51%) as a bright yellow solid the was not sufficiently soluble for meaningful ¹³C NMR analysis: mp 172 °C (decomposition); UV/Vis (CH₂Cl₂) 260 (72600), 363 (88800), 401 (sh, 43400) nm; IR (µscope) 3052, 2210, 1583, 1513 cm⁻¹; ¹H NMR (300 MHz, CD₂Cl₂) δ 7.31-7.48 (m, 40H), 7.83 (t, J =1.9 Hz, 2H), 8.13 (d, J = 1.9 Hz, 4H); ES MS (MeOH/toluene) m/z (rel. intensity): 1059.4 ($[M + H]^+$, 43); ES HRMS m/z calcd. ($C_{82}H_{47}N_2$, M+H) 1059.3734, found 1059.3738.


Macrocycle porphyrin assembly 7a: The crude product mixture containing macrocycle 5a (155 mg) was added to a solution of Ru porphyrin 6 (200 mg, 0.25 mmol) in CH₂Cl₂ (2 mL). Flash chromatography on alumina (hexanes/CH₂Cl₂, 1:1) yielded 7a (152 mg, 39% overall from 3a) as a burgundy solid: mp 132 °C (decomposition); UV/Vis (CH₂Cl₂) 294 (134800), 414 (535600), 534 (46500), 570 (20000); IR (μscope) 3126, 2866, 2210, 1916, 1806, 1575 cm⁻¹; ¹H NMR (300 MHz, CD₂Cl₂) δ 1.30 (d, J = 1.9 Hz, 4H), 1.84 (s, 12H), 2.00 (s, 12H), 2.70 (s, 24H), 6.04 (t, J = 1.7 Hz, 2H), 7.46 (d, J = 7.8 Hz, 8H), 7.57 (d, J = 7.8 Hz, 8H), 7.90 (dd, J = 7.8, 1.9 Hz, 8H), 8.11 (dd, J = 7.8, 1.9 Hz, 8H), 8.64 (s, 16H); ¹³C NMR (125.3 MHz, CD₂Cl₂) δ 21.53, 23.16, 23.45, 75.66, 78.07, 85.45, 88.83, 99.65, 118.09, 122.03, 127.30, 127.61, 132.08, 134.44 (2×), 137.40, 137.79, 139.82, 144.03, 145.08, 160.99, 181.08; ES MS (CH₃NO₂) m/z (rel. intensity): 2160 ([M + H]⁺, 3), 1361 ([M – porphyrin]⁺, 21), 798 ([porphyrin]⁺, 100), 563 ([5a + H]⁺, 92)³.


Macrocycle porphyrin assembly 7b: Macrocycle 5b (10 mg, 0.009 mmol) was added to a solution of Ru porphyrin 6 (15 mg, 0.019 mmol) in CH₂Cl₂ (2 mL) and the assembly product crystallized upon concentration to give 7b (15 mg, 60%) as a bright red solid: mp 266 °C (decomposition); UV/Vis (CH₂Cl₂) 363 (101200), 413 (493200), 534 (35800), 568 (9200) nm; IR (μscope) 3021, 1949, 1529, 1512, 1493 cm⁻¹; ¹H NMR (300 MHz, CD₂Cl₂) δ 1.12 (br s, 4H), 2.65 (s, 24H), 6.08 (br s, 2H), 7.02 - 7.43 (m, 48H), 7.53 (d, J = 7.7 Hz, 8H), 7.76 (d, J = 7.7 Hz, 8H), 8.05 (d, J = 7.7 Hz, 8H), 8.58 (s, 16H); ¹³C NMR (125.3 MHz, APT, CD₂Cl₂) δ 21.54, 76.41, 81.31, 85.40, 90.52, 99.23, 117.62, 121.89, 127.53, 127.56, 128.22, 128.31, 129.71, 130.09, 130.48, 132.14, 134.44, 134.47, 137.28, 139.02, 139.63, 139.78, 143.94, 145.34, 160.40, missing CO peak; ES MS (CH₃NO₂) m/z (rel. intensity): 1856 ([M + H – porphyrin]⁺, 4), 1059 ([5b + H]⁺, 34), 770 ([6 – CO]⁺, 100); MALDI MS: 1829 ([M + H – porphyrin – CO]⁺).


References:


- 1) Ng, Siu Choon; Novak, Igor; You, Xiaomei; Huang, Wei. *J. Phys. Chem. A* **1998**, *102*, 904 908.
- 2) Stang, P. J.; Fisk, T. E. Synthesis 1979, 438 440.
- 3) Note: Comparison of the theoretical isotopic distribution patterns with those peaks observed at m/z 2160 and 1361 suggests that both the protonated and radical cation species are present in the sample. The isotopic distribution patterns observed are consistent with two overlapping distributions. The peaks observed at m/z 798 and 563 mass units, however, are attributed solely to the radical cation and protonated fragments, respectively. Several attempts were made to improve the intensity of the $(M+H)^+$ peak (by varying the applied voltage, using different combinations of


solvents and by lowering the temperature) but all attempts resulted in a loss of sensitivity and no significant gains in intensity.

